一、培训背景
随着科技的飞速发展,人工智能(AI)已成为引领新一轮科技革命和产业变革的重要驱动力。大模型(Large Language Models, LLMs)作为AI领域的一项革命性突破,正以前所未有的速度重塑着我们对智能交互、知识管理、内容创作乃至整个数字化世界的认知。近年来,诸如GPT系列、Sora等大模型的不断涌现,不仅展示了AI在自然语言处理领域的巨大潜力,也预示着AI技术即将迈入一个更加复杂、细腻且广泛适用的新纪元。
人工智能成为全球焦点的背景下,2024年中国政府工作报告,就首次提出开展“人工智能+”行动,相信后续还有更多利好人工智能和“人工智能+”的政策即将释放。而在国家层面推动“AI+”行动,无数的机会也将井喷。
二、培训安排
1. 整体掌握大模型理论知识;
2. 了解自注意力机制、Transformer模型、BERT模型;
3. 掌握GPT1、GPT2、GPT3、chatGPT原理与实战;
4. 了解LLM应用程序技术栈和提示词工程Prompt Enginerring;
5. 了解国产大模型ChatGLM;
6. 了解Sora大模型技术优势;
7. 掌握语言理解与字幕生成及其应用;
8. 掌握图像生成和应用实操;
9. 了解应用场景与潜力分析;
10. 了解大模型企业商用项目实战。
Ø 从事人工智能领域工作的人
如果你正在从事人工智能、机器学习、数据分析等相关领域的工作,或者想要进入这些领域,那么学习AI大模型开发将会对你的职业发展有很大的帮助。
Ø 软件工程师和架构师
这类专业人士可以通过学习AI大模型开发课程来提升团队的研发效率,了解大模型如何影响软件架构,并掌握基于大模型的全新开发范式。
Ø 对人工智能有浓厚兴趣的人
对人工智能、机器学习等领域有浓厚的兴趣,想要深入了解并掌握相关技能,并有一定的软件开发基础的从业者。
培训时间 |
培训主题 |
培训大纲 |
第一天
|
|
1、初探大模型:起源与发展 2、GPT模型家族:从始至今 3、大模型_GPT_ChatGPT的对比介绍 4、大模型实战-大模型2种学习路线的讲解 5、 大模型最核心的三项技术:模型、微调和开发框架 6、 0penAl GPT系列在线大模型技术生态 7、0penAl文本模型A、B、C、D四大模型引擎简介 8、0penAl语音模型Whisper与图像型DALL·E模型介绍 9、最强Embedding大模型text-embedding-ada模型介绍 10、全球开源大模型性能评估榜单 11、中文大模型生态介绍与GLM 130B模型介绍 12、ChatGLM模型介绍与部署门槛 13、ChatGLM开源生态:微调、多模态,WebUI等项目简介 |
|
RNN-LSTM-GRU等基本概念 编码器、解码器 自注意力机制详解 Transformer Mask Multi-Head Attention 位置编码 特定于任务的输入转换 无监督预训练、有监督 Fine-tuning BERT思路的理解 BERT模型下游任务的网络层设计 BERT的训练 HuggingFace中BERT模型的推断 基于上下文的学习
基本问答系统的代码实现 深入阅读理解的代码实现 段落相关性代码实现 |
|
第一节: GPT1、GPT2、GPT3、chatGPT原理与实战 |
监督微调(SFT)模型、 指示学习和提示学习 简单提示、小样本提示、基于用户的提示 指令微调 RLLHF技术详解(从人类的反馈中学习) 聚合问答数据训练奖励模型(RM) 强化学习微调、PPO、 InstructGPT遵循用户意图使用强化学习方案 Instruct Learning vs. Prompt Learning ChatGPT增加增加了Chat属性 AI 系统的新范式 GPT1-GPT2-GPT3-InstructGPT的-chatGPT的技术关系 代码和案例实践: 使用chatGPT打造你的私人聊天助理 演示提示词技巧,翻译器润色器、JavaScript 控制台 、Excel Sheet 网站定制chatgpt-web |
|
第二节: Embedding模型实战 |
大模型技术浪潮下的Embedding技术定位 Embedding技术入门介绍 从Ono-hot到Embedding Embedding文本衡量与相似度计算 OpenAl Embedding模型与开源Embedding框架 两代OpenAl Embedding模型介绍 text-embedding-ada-002模型调用方法详解 text-embedding-ada-002模型参数详解与优化策略 借助Embedding进行特征编码 Embedding结果的可视化展示与结果分析 【实战】借助Embedding特征编码完成有监督预测 【实战】借助Embedding进行推荐系统冷启动 【实战】借助Embedding进行零样本分类与文本搜索 Embedding模型结构微调优化 借助CNN进行Embedding结果优化 【企业级实战】海量文本的Embedding高效匹配 |
|
第三节: LLM应用程序技术栈和提示词工程Prompt Enginerring |
设计模式:上下文学习 数据预处理/嵌入 提示构建/检索 提示执行/推理 数据预处理/嵌入 Weaviate、Vespa 和 Qdrant等开源系统 Chroma 和 Faiss 等本地向量管理库 pgvector 等OLTP 扩展 提示构建/检索 提示执行/推理 新兴的大语言(LLM)技术栈 数据预处理管道(data preprocessing pipeline) 嵌入终端(embeddings endpoint )+向量存储(vector store) LLM 终端(LLM endpoints) LLM 编程框架(LLM programming framework) LangChain的主要功能及模块 Prompts: 这包括提示管理、提示优化和提示序列化。 LLMs: 这包括所有LLMs的通用接口,以及常用的LLMs工具。 Document Loaders: 这包括加载文档的标准接口,以及与各种文本数据源的集成。 Utils: 语言模型在与其他知识或计算源的交互 Python REPLs、嵌入、搜索引擎等 LangChain提供的常用工具 Indexes:语言模型结合自定义文本数据 Agents:动作执行、观测结果, LangChain的代理标准接口、可供选择的代理、端到端代理示例 Chat:Chat模型处理消息 代码和案例实践: LLM大模型的使用 Prompts的设计和使用 |
|
第二天 |
第四节:LangChain的使用 |
构建垂直领域大模型的通用思路和方法 (1) 大模型+知识库 (2) PEFT(参数高效的微调) (3) 全量微调 (4) 从预训练开始定制 LangChain介绍 LangChain模块学习-LLMs 和 Prompts LangChain之Chains模块 LangChain之Agents模块 LangChain之Callback模块 Embedding嵌入 自定义知识库 知识冲突的处理方式 向量化计算可采用的方式 文档加载器模块 向量数据库问答的设计 Lanchain竞品调研和分析 Dust.tt/Semantic-kernel/Fixie.ai/Cognosis/GPT-Index LlamaIndex介绍 LlamaIndex索引 动手实现知识问答系统 代码和案例实践: 动手实现知识问答机器人 LangChain文本摘要 PDF文本阅读问答 |
第五节: 国产大模型ChatGLM |
新一代GLM-4模型入门介绍 智谱Al Mass开放平台使用方法03GLM在线大模型生态介绍 CharGLM、CogView. Embedding模型介绍 GLM在线知识库使用及模型计费说明 GLM模型API一KEY获取与账户管理方法 GLM模型SDK调用与三种运行方法 GLM4调用函数全参数详解 GLM4 Message消息格式与身份设置方法 GLM4 tools外部工具调用方法 GLM4 Function calling函数封装12GLM4接入在线知识库retrieval流程 GLM4接入互联网web_search方法 【实战】基于GLM4打造自动数据分析Agent 【实战】基于GLM4的自然语言编程实战 【实战】基于GLM4 Function call的用户意图识别 【实战】基于GLM4的长文本读取与优化 |
|
第六节: Sora大模型技术优势 |
什么是Sora Sora视频生成能力 Sora技术独特之处 统一的视觉数据表示 视频压缩网络 扩散型变换器模型 视频压缩与潜在空间 |
|
第七节: 语言理解与字幕生成及其应用 |
使用图像和视频作为提示词 动画DALL·E图像 扩展生成的视频 视频到视频编辑 连接视频 字幕生成 重字幕技术 GPT技术应用 |
|
第三天
|
第八节: 图像生成和应用实操 |
新兴的仿真功能 长期连续性和物体持久性 角色和物体的一致性 视频内容的连贯性 与世界互动 简单影响行为模拟 模拟数字世界 |
第九节: 应用场景与潜力分析 |
电影与娱乐产业 游戏开发 教育与培训 广告与营销 科学研究与模拟 生成数据 毕业生职位分类案例研究 提示函数 FunctionCalling 提示工程在模型上的应用 AI聊天社交应用 CallAnnie NewBing AI辅助文章创作 迅捷AI写作 ChibiAI AI办公智能助手 GrammaAI AI艺术领域创作 |
|
第十节: 大模型企业商用项目实战讲解 |
使用大模型实现推荐系统(商用案例) 使用大模型实现汽车在线销售系统 企业自然语言sql生成(企业内部系统使用) |
刘老师 十年企业培训经验 | 中培特聘专家
拥有十几年软件研发经验,十年企业培训经验,对Java、Python、区块链等技术领域有独特的研究,精通J2EE企业级开发技术。Java方向:设计模式、Spring MVC、MyBatis、Spring、StringBoot、WebService、CXF并且对Java源码有深入研究。Python方向:Python OOP、Mongodb、Django、Scrapy爬虫、基于Surprise库数据推荐,Tensorflow人工智能框架、人脸识别技术。区块链方向:BitCoin、Solidity、Truffle、Web3、IPFS、Hyperledger Fabirc、Go、EOS。
张老师 Javaweb,资深架构师,Langchain开发者
精通大型分布式互联网应用架构设计与技术开发。对于大规模分布式架构、微服务架构、云计算与容器化技术、开发与运维一体化、应用系统安全与和架构设计、海量数量处理、大数据等方向特别有研究,尤其是偏后端的对于高并发系统上有丰富的架构和实施经验。擅长Java方向、软件架构、微服务、软件工程和研发团队管理,目前在为某上市集团公司做大数据架构师,该公司主要为国家和国外提供安全上服务。
主导公司AI大模型开发项目,利用AI实现公司智能SQL项目,利用AI开发推进系统和销售管理系统。
培训费:6800元/人(含培训费、平台费、资料费及直播视频回放一年等费用)。
中培IT学院 Copyright © 2006-2024 北京中培伟业管理咨询有限公司 .All Rights Reserved
京ICP备13024721号-3 地址:北京市丰台区育芳园东里3号楼B座 邮编:100071